

Developing optimized ACMG-AMP criteria for classification of germline variants in TP53

Tina Pesaran¹, Maria Isabel Achatz², Laura Attardi³, Rebecca Bassett⁴, Jeffrey Bissonnette⁵, Gareth Evans⁶, Bing-Jian Feng⁷, Cristina Fortuno⁸, Megan Frone², David Goldgar⁶, Robert Huether⁹, Paul James¹⁰, Sharisse Jimenez¹¹, Chimene Kesserwan¹², Kristy Lee¹⁰, Shuwei Li¹, Phuong Mai¹³, Kelly McGoldrick¹, Jessica Mester⁵, Magali Olivier¹⁴, Sharon Plon¹⁵, Thomas P. Slavin¹⁶, Amanda Spurdle⁸, Liying Zhang¹⁷, Sharon Savage²

¹ Ambry Genetics, Aliso Viejo, CA, USA, ² National Cancer Institute, USA, ³ Stanford University, Stanford, CA, USA, ⁴ Kaiser Permanente, HI, USA, ⁵GeneDx, Gaithersburg, MD, USA, ⁶University of Manchester, Manchester, UK, ⁷University of Utah, Salt Lake City, UT, USA, ⁸ QIMR Berghofer Medical Research Institute, Brisbane City, Australia, ⁹ Tempus Labs, Chicago, IL, USA, ¹⁰ University of Melbourne, Australia, ¹¹ UNC Chapel Hill, NC, USA, ¹² St Jude's Children's Research Hospital Memphis TN, USA, ¹³ Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, ¹⁴ International Agency for Research on Cancer, France, ¹⁵ Baylor College of Medicine, Houston, TX, USA, ¹⁶ City of Hope, Duarte, CA, USA, ¹⁷ Memorial Sloan Kettering Cancer Center, New York, NY, USA

Introduction

Germline pathogenic variants in TP53 cause Li-Fraumeni Syndrome (LFS), an autosomal dominant cancer predisposition syndrome associated with high risk of malignancy, including soft tissue sarcoma, osteosarcoma, pre-menopausal breast cancer, brain tumors, adrenocortical carcinoma, and leukemia. Individuals with germline TP53 pathogenic variants often develop LFS-associated cancers in early childhood or early adulthood and are at increased risk for multiple primary cancers. It is estimated that up to 80% of individuals meeting classic clinical criteria for LFS have a detectable TP53 pathogenic variant, most of which are missense variants. In addition, the frequency of de novo TP53 mutations in LFS is around 7-20%. At the somatic level, mutations in TP53 are frequent in the majority of cancers. Germline pathogenic variants in TP53 are clinically actionable prompting the National Comprehensive Cancer Network to publish guidelines for screening recommendations and counseling about risk-reduction strategies for individuals with TP53 germline mutations and their at-risk relatives. Accurate and consistent classification of variants in TP53 across clinical and research laboratories are therefore very important for patient care.

Modified ACMG Classification criteria

The group was tasked with developing *TP53*-specific variant classification criteria, using the 2015 ACMG/AMP Variant Interpretation Guidelines ¹ as a starting point.

Three working groups were formed to review and present current knowledge related to *TP53* surrounding each ACMG/AMP criteria evidence type.

Draft TP53 Pathogenic Criteria

Draft pathogenic criteria were presented to the Genomic Variant Working Group in May 2017. Rules to combine criteria were kept as defined by ACMG/AMP.

Cuite	Description	
Criteria	Description	wodification
VERY STRONG		
PVS1	Null variant in a gene where LOF is a known	Includes truncating variants (except in the NMD resistant 3' end -
	mechanism of disease	55 nucleotides before penultimate) and splicing variants
STRONG		
PS1	Same amino acid change as a previously established	Must confirm there is no difference in splicing
	pathogenic variant regardless of nucleotide change	- Strong evidence if using RNA data
		 Moderate evidence if in silico modeling is used *
PS2	De novo (both maternity and paternity confirmed) in	Strength of evidence dependent on tumor type (see LFS Cancer
	a patient with the disease and no family history	Categories):
		- Very strong evidence – synchronous/metachronous LFS assoc. tumors in
		strong category *
		- Strong evidence – synchronous/metachronous LFS assoc. tumors in a
		moderate category (or mixed strong/moderate categories) OR a single
		tumor in strong category
		- Moderate evidence – a tumor in moderate category *
PS3	Well-established <i>in vitro</i> or <i>in vivo</i> . functional	Strong evidence - Transactivation assays in yeast shows loss of
	studies supportive of a damaging effect on the gene	activity (categorized as non-functional according to IARC
	or gene product	classification based on data from Kato et al. 2003) + other assays
		including colony formation assays and knock-in mouse models
		Moderate evidence. Transactivation assays in yeast shows loss of
		activity (sategorized as non functional according to IAPC
		activity (categorized as non-functional according to IARC
		classification based on data from Kato et al, 2003) OR other
		assays including other transactivation assays, colony formation
		assays and knock-in mouse models show complete loss of
PS4	The prevalence of the variant in affected individuals	TP53 deleterious alterations are rare and would require large
	is significantly increased compared with the	scale case control studies with sufficient power at the variant
	prevalence in controls	level. Relative Risk (RR) or Odds Ratios (OR) should be greater
		than 2 and the lower bound of the confidence interval should be
		greater than 1
MODERATE		
PM1	Located in a mutational hot spot and/or critical and	This rule can be applied to variants in hot spots, but not to
	well-established functional domain without benign	variants within functional domains.
	variation	
PM2	Absent in population databases (or at extremely low	Supporting evidence - Needs to be absent from controls (gnomAE
	frequency if recessive)	and other large relevant population cohorts)
PM3	For recessive disorders, detected in trans with a	Does not apply
	pathogenic variant	
PM4	Protein length changes as a result of in-frame	This rule should not be used at this time due to limited data
	deletions/insertions in a nonrepeat region or stop-	
	loss variants	
PM5	Novel missense change at an amino acid residuo	Supporting evidence - a matrix such as grantham or blossom
PIVI5	whore a different missense change determined to be	should be used to compare the varianter new variant must be
	where a unterent missense change determined to be	and as were then be over mutations rule out a line of
	pathogenic has been seen before	requal or worse than known mutation; rule out splicing as a
		mechanism of mutation using <i>in silico</i> tools [*]
		Moderate evidence - multiple known pathogenic variants (>2) at
		that residue using the same requirements as above (excluding ho
		spots)
DMG	Assumed de neue, but without confirmation of	Strongth of avidance would be dependent on tymer type less L
FIVIO	Assumed de novo, but without commation of	Strength of evidence would be dependent on tumor type (see LFS

The ClinGen *TP53* expert panel was formed under the umbrella of the Hereditary Cancer Domain and tasked with the goal to optimize the 2015 ACMG-AMP Variant Interpretation Guidelines for clinical interpretation of variants identified in *TP53*. Members of the panel consist of clinicians, researchers, genetic counselors, statisticians, structural biologists and diagnostic laboratory members with expertise and experience in *TP53*-associated pathology and *TP53* variant classification.

	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Here we present the draft optimized pathogenic and benign evidence criteria. These criteria will be validated on a set of established benign and pathogenic variants as an initial test of these optimizations.

Proposed Li-Fraumeni Syndrome (LFS) Associated Cancer Categories

Strong Associated LFS Cancers

- Breast cancer (IDC and DCIS) <31 years of age
- Choroid plexus carcinoma
- Adrenocortical adenoma or
 - carcinoma <18 years of age
- Rhabdomyosarcoma <46 years of
- Moderate Associated LFS Cancers
 Breast cancer >30 (upper age limit to be determined)
 Malignant brain tumors <46 years of age (excludes optic pathway gliomas)
 Primary lung cancer <46 years of age
 Adrenocortical adenoma or carcinoma

- Computational/Predictive working group
- Phenotype/Segregation/*De novo* working group
- Functional Data working group

Draft TP53 Benign Criteria

Benign criteria are presented below. Rules to combine criteria were kept as defined by ACMG/AMP.

Benign Criteria			
Criteria	Description	Modification	
STAND ALONE			
BA1	Allele frequency is greater than expected for	Minor allele frequency cutoff of 0.1% minimum of 5 alleles	
	disorder	present in the population	

STRONG			
BS1	Allele frequency is greater than expected for the disorder	Frequency cutoff of 0.06%; minimum of 5 alleles present in the population	
BS2	Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age	This rule does not apply since the expected penetrance in population cohorts is not known	
BS3	Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing	 Strong evidence - transactivation assays in yeast (IARC classification based on data from Kato et al, 2003) shows retained activity + other assays including colony formation assays and knock-in mouse models Supporting evidence - transactivation assays in yeast (IARC classification based on data from Kato et al, 2003) shows retained activity* 	
BS4	Lack of segregation in affected members of a family	Variant segregates to opposite side of the family who meets LFS criteria OR Variant present in >3 living unaffected individuals above age 46 years	
	•		
	Missense variant in a gene for which primarily	Does not apply	
DFI	truncating variants are known to cause disease	boes not apply	
BP2	Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance	Under review	
BP3	In-frame deletions/insertions in a repetitive region without a known function	Does not apply	
BP4	Multiple lines of computational evidence suggest no impact on gene/gene product	O Concordance of 2 predictors: REVEL and AGVGD (zebrafish). Consider Provean for indels	
BP5	Variant found in a case with an alternate molecular basis for disease	Under review	
BP6	Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation	Do not plan to use	
BP7	A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved	Concordance of MaxEntScan and HSF; If a new alternate site is predicted, compare strength to native site in interpretation	

- Strong evidence – synchronous/metachronous LFS assoc. tumors	
in strong pathogenic category *	
- Moderate evidence – synchronous/metachronous LFS assoc.	
tumors in a moderate	
pathogenic category (or mixed strong/moderate categories) OR a	
single tumor in strong category	
 Supporting evidence – a single tumor in moderate category * 	

SUPPORTING	G	
PP1	Cosegregation with disease in multiple affected family	Strength of evidence would be dependent on the # of meiosis within
	members in a gene definitively known to cause the	a family:
	disease	- Strong evidence - <u>>6</u> meiosis in >1 family *
		- Moderate evidence – 4-5 meiosis in family *
		- Supporting evidence – 3 meiosis in 1 family
PP2	Missense variant in a gene that has a low rate of	This rule should not be used due to the frequency of benign missense
	benign missense variation and in which missense	variants
	variants are a common mechanism of disease	
PP3	Multiple lines of computational evidence support a	Concordance of two predictors: REVEL and AGVGD (Zebrafish).
	deleterious effect on the gene or gene product	Splicing: Concordance of MaxEntScan and HSF. Consider using
		Provean for indels.
PP4	Patient's family history is highly specific for a disease	Moderate evidence – family history meets Classic LFS criteria *
	with a single genetic etiology	Supporting evidence – family history meets Chompret criteria
PP5	Reputable source recently reports variant as	N/A
	pathogenic, but the evidence is not available to the	
	laboratory to perform an independent evaluation.	

Future Directions

- 10-15 variants classified as pathogenic or likely pathogenic and 10-15 variants classified as benign or likely benign by multiple ClinVar submitters will be tested.
- Following final edits to the criteria and curation process, an application will be submitted to ClinGen for formal

References

sequence variants: a joint consensus recommendation of the American

1. Richards S et al. Standards and guidelines for the interpretation of

Molecular Pathology. Genet Med. 2015 May 17(5):405-24.

College of Medical Genetics and Genomics and the Association for

Expert Panel status.

- age
- Osteosarcoma <46 years of age
- >18 years of age
- Osteosarcoma >45 years of age
 Other sarcomas (malignant phyllodes tumor), with the exception of dermatofibrosarcoma & Ewing sarcoma
 Low-hypodiploid ALL

ClinGen is funded through the following grants & contracts: 1U41HG006834, 1U01HG007437, 1U01HG007436,

