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Background: Among neurodegenerative diseases, the prevalence of 

Parkinson’s Disease (PD) remains as the fastest rising in the US. The distribution 
of an aging population impacts PD incidence (90,000 individuals newly diagnosed 
annually) with an estimated 1.2 million individuals living with PD by 2030 
(https://www.parkinson.org/understanding-parkinsons/statistics).  

Both genetic and non-genetic factors contribute to PD with level of 
involvement dependent on familial or sporadic diagnosis. Both motor and non-
motor features define clinical presentation with subtle interventional prodromal 
disease symptoms occurring prior to formal PD diagnosis. Neuropathological 
indicators include the loss of dopaminergic neurons located in the midbrain of 
the substantia pars compacta and insoluble alpha-synuclein aggregates, Lewy 
bodies, Lewy neutrites spreading to the cortex. The primary mechanism of motor 
function disruption is caused by an intracellular aggregation of alpha-synuclein 
which leads to dysfunction in basal ganglia circuitry. PD categorization by 
established Hoehn and Yahr disease staging calibrates by onset of clinical 
manifestations, however, machine learning with additional inputs such as brain 
health captured by imaging or genetic predisposition captured by sequencing 
uncovers deeper understanding to define progression subtypes.

Methods: We implemented an embedded node2vec approach within Gene Ontology (GO) and Human Phenotype Ontology (HPO) terms within a longitudinal machine learning 

framework to predict PD subtypes.  Our study utilized -OMICs data (genomic and imaging) along with HPO/GO term embedding, CSF biomarkers, and detailed longitudinal clinical 
measurements to predict PD progression subtypes (N=606 individuals). 
We employed a Neural Net based Long Short-Term Memory (LSTM) ML model utilizing Parkinson’s Progression Marker Initiative (PPMI) (https://www.ppmi-info.org/) clinical features 
at 2 time points (baseline and 2 years), motor changes, cognitive impairment and memory scores accounting for ON/OFF medication use, genetic variation, HPO/GO terms, and 
imaging (T1-weighted neuroimaging for volume and thickness). These inputs were trained in the LSTM model to create 2-D embedded vectors. Each of the 606 patients and their 
sequence of clinical visits over time is represented by a 2-D vector resulting in 606 2-D vectors. 
• A total of 1457 HPO terms and 970 GO terms were used for node2vec embedding. 
• Embedding added 300 dimensional “Word2Vec” representation for the HPO terms and 100 dimensional “Node2Vec” representation for the GO terms.
• Ninety known PD associated genome wide association study variants were used as genetic inputs.
Prior to training, the features were standardized by subtracting the mean and dividing by the standard deviation. A leave-one-out cross-validation was also performed. 

SUBTYPE-I

SUBTYPE-II
SUBTYPE-III

Two Class Method: Area Under Curve %

Clinical + Images 93.21%

Clinical 92.67%

Images 62.11%

90 SNP + GO + HPO 52.16%

Conclusions: PD subtyping to identify fast or slow disease progressors or stratifying by genetic carrier status remains 

especially challenging due to small sample size. Our PPMI study results identified specific genes (CTNNB1, SHH, and GLI2) from 
HPO embeddings/biologic pathways (using gene to GO term mappings as an intermediary) combined with brain regions 
characterizing fast/slow PD progressors independent of Hoehn and Yahr disease stage. Utilizing embedding algorithms along with 
HPO/GO terms increased the Area Under the Curve (AUC) by ~5% compared to using genetic variants directly. Clinical + imaging 
inputs provided the highest AUC for two (93.2%) or three (77.4%) subtype models. 
• Findings will provide mapping between genetic risk variants, symptom progression along with brain network health useful for 

clinical trial inclusion. 
• Future personalized medicine applications include specific drug targets by brain region and PD-related biologic mechanism.

Results: Utilizing embedding algorithms along with HPO/GO terms increased the Area Under the Curve (AUC) by ~5% compared to using genetic variants directly. Clinical + imaging 

inputs provided the highest AUC for two (93.2%) or three (77.4%) subtype models (Tables 1 and 2; Figure 1 and 2). 
The key drivers of clinical measures/biomarkers for subtypes were UPDRS and Total Tau. PPMI study results identified specific genes (CTNNB1, SHH, and GLI2), HPO 

embeddings/biologic pathways via GO terms combined with brain regions characterizing fast/slow PD progressors independent of Hoehn and Yahr disease stage. 

Three Class Method: Area Under Curve %

Clinical (Baseline + First Visit) 78.05%

Clinical (Baseline) 77.72%

Clinical + Images 77.39%

Clinical + 90 SNP 76.73%

Clinical + GO + HPO 75.57%

90 SNP 43.23%

90 SNP + GO + HPO 42.40%

GO + HPO 39.93%

Table 1. Two class method: Type I versus 
Type II/III by Input Type

Table 2: Three class method: Type I versus 
Type II versus Type III by Input Type

Figure 1. Dendogram of PD progression (baseline to 2 year) three subtype model

Next Steps: Currently, PD progression milestone 

inputs to enhance clinical outcome interpretation are 
being incorporated.

Plans to replicate our approach in additional 
Accelerating Medicines Partnership (AMP) datasets, 
such as PD Biomarkers Program (PDBP), LRRK2 Cohort 
Consortium, Harvard Biomarker Study, 
• especially for longitudinal clinical measurements, 

imaging (where available), and genomic data for 
HPO/GO term (node2vec) embedding. 

Gene: CTNNB1 SHH GLI2 GLI3 SOX9 PTCH1 NOTCH1 CREBBP TP63

Count: 710 630 590 568 562 561 561 555 553

Gene: CTNNB1 SHH GLI2 CREBBP NOTCH1 SOX9 GLI3 PTCH1 CAV1

Count: 751 637 601 590 586 579 575 573 573

Figure 2. Leave One Out Cross-validation Clinical + Imaging

Genes indicated from embedding methods found in Tables 3 and 4 may point to biologic mechanism progression of PD. CTNNB1 may rejuvenate the microenvironment, and promote 
neurorescue and regeneration, part of the pathway for (Wnt)/β-catenin (WβC) signaling is a vital pathway for dopaminergic (DAergic) neurogenesis (1). Another target potentially for 
neurprotectivity involves the inhibition of Sonic Hedgehog (SHH) signal transduction signaling (2). Also part of the SHH pathway, the GLI2 gene encodes a transcription factor that 
participates in the development of the dopaminergic system during embryogenesis. The sex-determining region Y box 9 (SOX9) gene is a known initiator of gliogenesis, during early 
astrocyte differentiation. 

Figure 3 shows the SHAP diagram of GO terms  for SMAD phosphorylation and axon near this axis with HPO terms point to balance, coordination, muscle weakness, abnormal insulin 
and cholesterol levels. Structural measurements of the medial visual cortex, medial temporal and mid-brain regions contribute to subtype differentiation; these regions are reinforced by 
the biological pathway analysis.

Figure 3 .SHAP Diagram of features near axisTable 3. Associated gene counts of top 10 HPO embeddings and 50 codes matching across embeddings

Table 4. Associated gene counts of top 10 GO embeddings and 50 codes matching across embeddings
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