The Power of Collaboration: Institutional Partnership Initiatives for Data Sharing Leads to TNXB Phenotype Expansion

Background

TNXB Gene

- Associated with autosomal recessive classical-like Ehlers Danlos Syndrome Type 1 (clEDS)
- Characterized by joint hypermobility, velvety skin, and hyperextensible skin
- Identified in a case report in individuals with abdominal and iliac artery aneurysm
- Has *no established association* with arterial aneurysms and dissections

Aneurysms and Dissections

- Occur most commonly in the aorta
- Can be present in other blood vessels
- Can be lethal if not detected or treated early
- Are attributed to genetic contributions and conventional risk factors
- Can be syndromic (e.g., Marfan Syndrome) or non-syndromic
- Can have lower thresholds for surgical repair if genetic cause is identified
- When genetic, can impact medical management and risk stratification of relatives
- Often have an *unknown or unidentified genetic cause*

Methods

1. Clinical exome sequencing (ES) at Lab #1 (academic medical center)

A 52-year-old female with *bilateral vertebral artery dissection, aortic aneurysm*, joint

hypermobility, and fibromuscular dysplasia was found to carry two variants in TNXB.

- Likely pathogenic (LP) c.8791+1G>A and
- Variant of uncertain significance (VUS) c.12469+2T>C
- Segregation analysis confirmed orientation of variants is in trans

2. Retrospective review of clinical ES data from Lab #1

350 clinical exomes (ES) with the referral indication of aneurysm and/or dissection of various vessels were screened for variants in TNXB.

- > 10/350 (2.8%) carried at least one variant in TNXB
- > 5/350 (1.4%) were found to carry two variants in TNXB
- > All 5 had a personal history of aneurysm or dissection

Research limitation: lack of large dataset of matched controls

Proposed solution: data sharing partnership with commercial laboratory

3. Analysis of genetic testing options from other labs to identify replication dataset

Commercially available genetic tests were compared for inclusion or exclusion of TNXB in panels

- Search terms used: aneurysm, dissection, aortopathy, aortic aneurysm
- 22 labs offered panel testing for aneurysms and dissections
- > Only 3/22 labs included TNXB in multigene panels (MGPT) for aneurysm/dissection
- > Other labs included TNXB for connective tissue disease (CTD) but not aneurysms/dissections

4. Data analysis

Case-control analysis was conducted using a datasets from one commercial diagnostic laboratory, Lab #2. Analysis consisted of:

- MGPT and ES results
 - > 1844 MGPT for clinical suspicion of thoracic aortic aneurysm with dissection (TAAD) from Lab#2 that analyzed TNXB
- > 27,068 exomes used as controls; 26,922 of these were provided by Lab#2
- Unclassified variants, VUSs, LP variants, and pathogenic variants in TNXB
- \succ Fisher's Exact Test to analyze the burden of ≥ 2 TNXB variants between cases and controls

Arpita Neogi, MS, CGC¹; Meghan Towne, MS, CGC²; Arya Mani, MD ^{1,3} ¹Cardiovascular Medicine, Yale University; ²Ambry Genetics; ³Department of Genetics, Yale University

Our case-control data analysis provides the first statistical evidence of a vascular phenotype for TNXB using a large control dataset. There are several interrelated implications of this result, described below.

Gene curation

Test selection

Clinical implications

- potential significant clinical relevance for patients
- warrants additional exploration

Summary

- structural integrity of connective tissues.
- dissections
- of candidate genes

Limitations

- patients from only 2 laboratories
- variants and risk of A/D to patients

- doi: 10.1055/s-0039-3400233
- A Clinical Perspective. Biomolecules, 10(2). doi: 10.3390/biom10020182

COI: MT is a salaried employee of Ambry Genetics. AN and AM are employees of Yale University. The authors declare no conflicts of interest.

Implications

> TNXB is currently not validated as a disease gene for vascular aneurysms & dissections > Our data provides case-control evidence for gene curation, supporting this association > Additional experimental data will likely be required before universal inclusion on tests

Currently, TNXB is not universally included on tests for aneurysms & dissections > Clinicians may be unaware of TNXB as a candidate gene for aneurysms & dissections > Inconsistent inclusion of TNXB and limited testing of affected individuals stalls understanding of disease pathogenesis and genotype-phenotype correlation

> Vascular aneurysms & dissections appear to be a rare feature of TNXB, but with

> There may be an increased risk of vascular events regardless of cis/trans orientation > Risk for A/D in 'carriers' in families with 2 or more variants is currently unknown and

CONCLUSION

• TNXB encodes tenascin-X, which plays an important role in maintaining the

• TNXB variants do not have an established association with vascular aneurysms or

• After incorporating data from one commercial laboratory, we amassed significant evidence supporting the expansion of phenotype associated with TNXB

• This reinforces the value of transparent data sharing, within the confines of privacy regulations, between researchers, clinicians, and laboratories in the identification

• Larger sample size is needed to evaluate genotype-phenotype correlation.

• TNXB is not routinely included in genetic testing for A/D, and this data represent

Broader testing is needed to determine a more accurate prevalence of TNXB

References

Alcaraz, L. B., Exposito, J. Y., Chuvin, N., Pommier, R. M., Cluzel, C., Martel, S., . . . Valcourt, U. (2014). Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-beta. J Cell Biol, 205(3), 409-428. doi: 10.1083/jcb.201308031 Faggion Vinholo, T., Brownstein, A. J., Ziganshin, B. A., Zafar, M. A., Kuivaniemi, H., Body, S. C., . . . Elefteriades, J. A. (2019). Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. Aorta (Stamford), 7(4), 99-107.

Demirdas S, Dulfer E, Robert L, Kempers M, van Beek D, Micha D, van Engelen BG, Hamel B, Schalkwijk J, Loeys B, Maugeri A, Voermans NC. Recognizing the tenascin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet. 2017 Mar;91(3):411-425. doi: 10.1111/cge.12853. Epub 2016 Nov 4. PMID: 27582382.

Ostberg, N. P., Zafar, M. A., Ziganshin, B. A., & Elefteriades, J. A. (2020). The Genetics of Thoracic Aortic Aneurysms and Dissection: Zweers, M. C., Bristow, J., Steijlen, P. M., Dean, W. B., Hamel, B. C., Otero, M., . . . Schalkwijk, J. (2003). Haploinsufficiency of TNXB is

associated with hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet, 73(1), 214-217. doi: 10.1086/376564