

Clinical Exome Sequencing Leads to the Diagnosis of Mitochondrial Complex I Deficiency in a family with global developmental delays, ataxia, and cerebellar and pons hypoplasia

Exome sequencing was performed on a 14 year-old female with familial ataxia, global developmental delays, and cerebellar and pons hypoplasia. The family history was remarkable for a 3 yearold sister with a similar phenotype. Nearly a decade of molecular, cytogenetic, and biochemical testing was uninformative. Exome sequencing revealed compound heterozygous alterations of the *NUBPL* gene (c.311T>C; p.L104P & c.815-27T>C). The c.311T>C missense alteration is located at a highly conserved amino acid. The c.815-27T>C alteration is located at a highly conserved nucleotide and previous in vitro analyses demonstrated splicing defects. The affected sister manifested both alterations; each parent carried one alteration. Alterations within the *NUBPL* gene occur in an autosomal recessive fashion in association with mitochondrial complex I deficiency syndrome (CI deficiency) (MIM_252010). The *NUBPL* gene was first discovered in association with disease in 2010 and has only been reported in two other families, both of which displayed remarkable clinical overlap with the family herein. Exome sequencing is an especially powerful tool to aid in the diagnosis of CI deficiency given the extreme clinical and genetic heterogeneity making establishing a clinical diagnosis exceedingly difficult. Further, the underlying mutation has not been discovered in about half of patients with CI deficiency, thought to be due to yet undiscovered associated genes. Diagnostic exome sequencing led to the successful identification of the NUBPL alterations and, after years of unsuccessful analyses, led to a molecular diagnosis for the family.

Figure 1: Family History

Legend:

Shading indicates affected * Whole exome sequencing [‡] Co-segregation analysis

Table 1: Variant Filtering Based on Inheritance Model & Interpretation

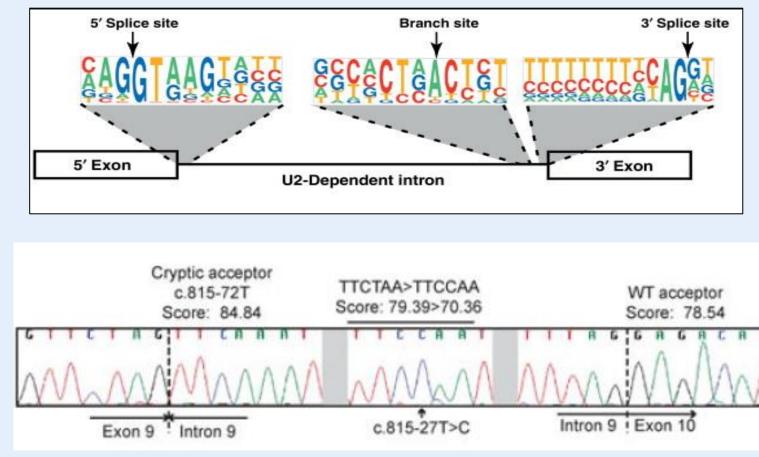
		Post-Medic	Notable	
	Post-Inheritance Model Filtering	Post-alteration review	Post-clinical association review	Candidate Genes ²
Autosomal Dominant Genes (Alterations)	33 (33)	33 (33)	2 (2)	0 (0)
Autosomal Recessive Genes (Alterations)	7 (14)	6 (12)	1 (2)	1 (2)
X-linked Recessive Genes (Alterations)	0 (0)	0 (0)	0 (0)	0 (0)
X-linked Dominant Genes (Alterations)	3 (3)	3 (3)	0 (0)	0 (0)
Y-linked Genes (Alterations)	N/A	N/A	N/A	N/A
TOTAL GENES (Alterations)	43 (50)	42 (48)	3 (4)	1 (2)

¹Post-medical review filtering involves the manual removal of genes unrelated to the patient's evaluated phenotype and alterations considered benign

²Notable Candidate Genes: Gene alterations selected for co-segregation.

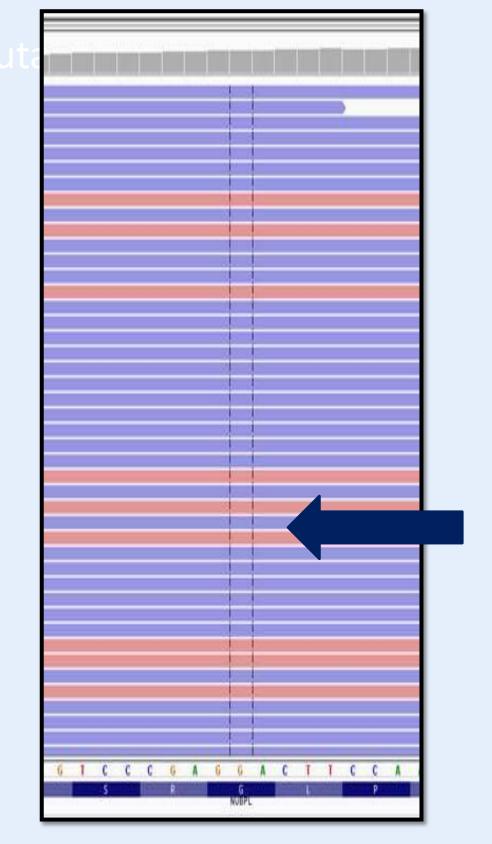
METHODS

- Genomic deoxyribonucleic acid (gDNA) was isolated from whole blood from the patients and sister. Samples were prepared using the SureSelect Target Enrichment System (Agilent Technologies, Santa Clara, CA). The enriched exome libraries were sequenced using paired-end, 100-cycle chemistry on the Illumina HiSeq 2000 (Illumina, San Diego, CA).
- > The Human Gene Mutation Database (HGMD; Stenson, 2009), OMIM, and several other databases were used to search for previously described gene mutations and polymorphisms. A molecular geneticist performed interpretive filtering based on the deleterious nature of the candidate alterations literature search and analysis of the relevance of the candidate genes' function in relation to the patient's phenotype.
- > Each candidate variant was analyzed by Sanger sequencing for mutation confirmation and co-segregation studies were performed for the family.


Table 2. NUBPL Alterations and Familial Co-segregation Results

Gene (RefSeq ID)	Protein	Alteration	Exon #	Genotype	Alteration Type	Patient	Mother	Father	Affected Sister
NUBPL	NUBPL Nucleotide binding (NM_025152) protein-like	c.3518C>T (p.P1173L)	Exon 4	Heterozygous	Missense	+/-	+/-	-/-	+/-
(NM_025152)		c.815-27T>C	Intron 9	Heterozygous	Splice	+/-	-/-	+/-	+/-
¹ GRCh37									

Table 3. Clinical overlap with previous cases *NUBPL*: Mitochondrial complex I deficiency (MIM_252010)


Figure 2. c. 815-27C>T is a common branch point mutation

			Alleles			Geno	types		ice site	
Populati	on	с	т	Total	C/C	C/T	T/T	Total	SAG	GTAAGA
		31	6,511	6,542	0	31	3,240	3,271		\sim $>$
uropean Am	nerican	0.47%	99.53%	100%	0%	0.95%	99.05%	100%	5' Exor	
		-	_	N/A	-		-	N/A		
		5	2,945	2,950	0	5	1,470	1,475		Cryptic aco
African Ame	erican	0.17%	99.83%	100%	0%	0.34%	99.66%	100%		c.815-72 Score: 84
		-	-	N/A	-		_	N/A	GTTCT	
		36	9,456	9,492	0	36	4,710	4,746	MAA	
Total		0.38%	99.62%	100%	0%	0.76%	99.24%	100%	Exc	on 9 Intron 9
		-		N/A	9		-	N/A		
Patient	Country	y of origin	c.DNA ^b			Protein		Exon	State	Inheritance
1	Argenti	na	c.166G>	c.166G>A		p.Gly56Arg		2	Homozygous ^c	Unknown
			c.815-2	7T>C ^d				Intron 9	Homozygous	Unknown
	-		4000			01 50				-
2 Germany		ly	c.166G>A c.667_668insCCTTGTGCTG					2	Heterozygous	Paternal
					argerg	p.Glu223	SAlats ⁻ 4	8	Heterozygous	Maternal
			c.815-2	/1>C*				Intron 9	Heterozygous	Paternal
3 and 4	Canada	da c.1660		166G>A		p.Gly56Arg		2	Heterozygous	Paternal
(sibs)			c.313G>T			p.Asp105Tyr		4	Heterozygous	Maternal
			c.815-2	7T>C ^d				Intron 9	Heterozygous	Paternal
5	United	States	c.166G>	A		p.Gly56/	٨rg	2	Heterozygous	Paternal
			693+1G>A"			p.?		Intron 8	Heterozygous	Unknown ^r
			815-27	T>C ^d				Intron 9	Heterozygous	Paternal
6	Netherl	ands	c.166G>	A		p.Gly56/	Arg	2	Heterozygous	Maternal
			c.579A>	с		p.Leu19	0.50 	7	Heterozygous	Paternal
			c.815-2	7T>C ^d				Intron 9	Heterozygous	Maternal
7 ⁹	Australi	a	c.166G>	A		p.Gly56/	Arg	2	Heterozygous	Paternal
				leletion (ex luplication	Contraction of the second s			1-4 and 7	Heterozygous	Maternal
			c.815-2	7T>C ^d				Intron 9	Heterozygous	Paternal

	Calvo et al. 2010	Tenisch et al. 2012	Current Patient			
Gender	Male	Male	Female			
Current Age	8 yrs	23 yrs	14 yrs			
Age of onset	2 yrs	2-3 yrs	6 mo			
Presenting Symptom	Developmental Delay		Developmental Delay			
Ataxia	Yes	Yes	Yes			
Speech	Impaired	Slurred	Impaired			
Ocular Sx	Nystagmus Squint	Nystagmus	Nystagmus			
Seizures	Staring spells		Yes			
MRI	Leukodystrophy	T2 hyperinstensity of cerebellum and brainstem	Cerebellar and pons atroph			
Plasma Lactate	Normal		Normal			
CNS Lactate	Elevated	Elevated	Elevated			
Muscle Bx	~20% Ragged Red Fibers		Pending			
Complex I Deficiency	Skeletal Muscle and Fibroblasts	Skeletal Muscle	Pending			
	p.G56R	p.G56R	DOES NOT CARRY			
NUPBL alterations:	c.815-27T>C	c.815-27T>C	c.815-27T>C			
	Ins/Del Rearrangement	c.205_205delGT	p.L104P			
	MutationsVariant, Likely PathogenicVariant, Likely Benign					

815-27C>T not *in cis* with missense in our patient

CONCLUSIONS

<u>CLINICAL HX</u>: Proband initially presented at 6 months of age with hypotonia an developmental delay born to nonconsanguineous parents. Now at 14 years of age with seizures, severe ataxia, and cognitive impairment. No diagnosis despite years or previous testing.

RESULTS

<u>FAMILY HX</u>: Similarly affected sister, now 5 years of age, and one unaffected sister (Figure 1). No other family history.

INFORMATICS & ANALYSIS: Inheritance model filtering based on autosomal and X-linked dominant and recessive models revealed 43 genes (50 unique alterations). Manual review one notable gene (two alterations) with potential clinical relevance (**Table 1**).

MOLECULAR DIAGNOSIS: Automated fluorescence dideoxy sequencing confirmation confirmed the two alterations: *NUBPL:* c.3518C>T (p.P1173L) and c.815-27T>C (**Table 2**).

> The c.815-27T>C alteration is thought to represent one of the most common autosomal recessive OXPHOS mutations observed to date (Tucker, 2012) (Figure 2). In vitro analyses via mRNA, protein expression, and RT-PCR analyses demonstrate that the alteration reduces mRNA expression and protein levels, and results in the production of three distinct transcripts (Tucker, 2012).

<u>CLINICAL RELEVANCE</u>: The patient's clinical presentation is consistent with that of previously-reported patients with NUBPL alterations who present with Mitochondrial Complex I deficiency (MIM_252010) (Calvo, 2010) (**Table 3**).

- Recent publication of 5 additional families with pathognomonic MRI findings (Figure 2).
- Branch point mutation is seen in all families
 - In cis with missense alteration in <u>all</u> reported cases except this one
 - Recurrent mutation vs. founder haplotype

<u>CLINICAL INTERVENTION</u>: Treatment initiated with Mitochondrial coenzymeQ cocktail therapy. Future potential for EPI-743 clinical trials (complex I enhancer)

- Clinical diagnostic exome identified compound heterozygous mutations in *NUBPL* consistent with the diagnosis of mitochondrial complex I deficiency
- The identified mutations are highly consistent with the patient's clinical symptoms which provides an opportunity for clinical intervention and surveillance as well as recurrence risks estimation and family planning.

REFERENCES:

- Calvo et al. (2010) *Nature Genetics* 2010 Oct;42(10):851-8
- Tucker et al (2012) Human Mutation 2012 Feb;33(2):411-8.
- Kevelam et al (2013) *Neuroloy* 2013 Apr 23;80(17):1577-1583
- HGMD[®] [Internet]: Stenson PD, et al. (2009) Genome Med **1**(1):13.
- PolyPhen [Internet]: Adzhubei IA, et al. (2010) Nat Methods 7(4):248-249.
- SIFT [Internet]: Ng PC & Henikoff S (2006) Hum Genet. 7:61-80.

ACKNOWLEDGEMENTS:

We wish to thank the clients of Ambry Genetics for their dedication and commitment to all patients.

CONTACTS:

Elizabeth Chao, MD

echao@ambrygen.com

Philip Gray, PhD pgray@ambrygen.com