When clinical meets molecular: why, when and how do *CTNNA1* germline variants cause hereditary diffuse gastric cancer development

Silvana Lobo^{1,2}, Alexandre Dias^{1,*}, Marta Ferreira^{1,*}, Jennifer Herrera-Mullar³, Ana Maria Pedro¹, Irene Gullo¹, Magali Svrcek⁴, Robert Hüneburg⁵, Leticia Moreira⁶, Sigrid Tinschert⁷, Lise Boussemart⁸, Jeremy L Davis⁹, Birthe Zäncker¹⁰, Liselotte P Van Hest¹¹, Kasmintan Schrader¹², Manuela Baptista¹³, Jolanda M Van Dieren¹⁴, Judith Balmaña^{15,} Vivian Strong¹⁶, Conxi Lazaro¹⁷, Bryson Katona¹⁸, Chrystelle Colas¹⁹, Florence Coulet²⁰, Rachid Karam³, Paulo S Pereira¹, Patrick Benusiglio²¹, Carla Oliveira^{1,#} On behalf of the CTNNA1 worldwide working group

¹i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal

²ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal

³AmbryGenetics, California, United States

⁴Sorbonne Université, Equipe Instabilité Des Microsatellites Et Cancer, Centre de Recherche Saint Antoine, France ⁵National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Germany

⁶Hospital Clínic Barcelona, Department of Gastroenterology, Spain

⁷Medical University Innsbruck, Division of Human Genetics, Austria

⁸Nantes Université, Univ Angers, CHU Nantes, INSERM, Immunology and New Concepts in ImmunoTherapy, France

⁹National Cancer Institute, National Institutes of Health, Bethesda, Maryland, US

¹⁰Institut für Klinische Genetik, Universitätsklinikum CarlGustav Carus Dresden, Germany

¹¹Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands

¹²Faculty of Medicine, University of British Columbia, Department of Medical Genetics, Canada

¹³Centro Hospitalar Universitário São João, Portugal

¹⁴Netherlands Cancer Institute, Department of Gastrointestinal Oncology, The Netherlands

¹⁵Hereditary Cancer Group, Medical Oncology Department Hospital Vall d'Hebron, Spain

¹⁶Department of Surgery, Surgical Innovations and Outcomes, Memorial Sloan Kettering Cancer Center, New York, USA

¹⁷Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Spain
¹⁸University of Pennsylvania Perelman School of Medicine, Division of Gastroenterology and Hepatology, Pennsylvania, USA

¹⁹Institut Curie, University Paris SciencesLettres, Department of Genetics, France

²⁰Unitéfonctionnelle d'Onco-angiogénétique et génomique des tumeurs solides, Département de Génétique médicale, Hôpital Pitié-Salpêtrière, France

²¹Unité fonctionnelle d'Oncogénétique clinique, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, France

[#]Corresponding author (<u>carlaol@i3s.up.pt</u>)

*Equal contribution to this work

ABSTRACT:

Introduction: Rare CTNNA1/ α E-catenin germline truncating variants were found in Hereditary diffuse gastric cancer (HDGC) patients, however, full disease spectrum and variant-type causality are understudied. We aim to explore genotype-phenotype associations in *CTNNA1* variant carriers and molecular pathways causing CTNNA1-driven diffuse gastric cancer (DGC).

Methods: Using a clinical database of 1388 individuals (1577 phenotypes) from 364 CTNNA1 variant carrier families (Testing cohort: 71 European; Validation cohort: 290/293 American), we analyzed genotype–phenotype associations with multivariable logistic regression. Variants functional impact was assessed with in vitro/in vivo models. Transcriptomic profile of 11 DGC was analyzed.

Results: From 71 European carrier families (61% ascertained for HDGC), 26 carried truncating variants from which 21 (81%) met HDGC criteria. DGC, occurring on average at 47.3 \pm 13.7, was significantly more likely to occur in truncating families than in non-truncating (OR=8.33; 95%CI [3.125-25]; p<0.001). While not statistically significant, lobular breast cancer (LBC) followed the same trend in truncating carriers (OR=4.76;

95%CI [0.98-50]; p=0.053). From a validation cohort of 293 families (24% ascertained for HDGC) enriched in truncating variants (271/293), 32 (12%) had HDGC. Here, LBC occurring on average at 55.2 \pm 12.3 was more frequent than DGC (40.6 \pm 17.0). We created CRISPR/Cas9 edited gastric cancer cells bearing a CTNNA1 truncating variant with complete CTNNA1/ α E-catenin loss. Nonsense Mediated mRNA Decay (NMD) blockade increased CTNNA1 mRNA expression by 13-fold, recovering to wild-type (WT) levels. We created a Drosophila α -cat knockout (KO), in which organ development/lethality was rescued with overexpression of human WT/missense α E-catenin, but not with truncated α E-catenin. Paired normal/tumor transcriptomic analysis of DGC from carriers revealed 67 upregulated genes in tumors, including HIF1 α and PIK3R3, two cancer therapy targets and drug repurposing candidates in CTNNA1-driven DGC.

Conclusion: We provide a rational to test CTNNA1 specifically in families meeting HDGC criteria, showing a DGC association with truncating, but not missense variants. Consolidation of LBC association to truncating variants requires larger series. We highlight NMD as a prime mechanism for CTNNA1 truncated transcripts degradation and created an in vivo model to assess variants functional impact. CTNNA1 DGC overexpress molecules worth exploring as therapy targets.

Acknowledgements: FCT PhD fellowship (2020.05773.BD); ERN-GENTURIS (Project ID: No.739547); LEGOH (PTDC/BTM-TEC/6706/2020).