

Performance of ACMG/AMP variant interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research consortium

Laura M. Amendola,^{*1} Gail P. Jarvik,^{*1} Michael C. Leo,² Heather M. McLaughlin,³ Yassmine Akkari,⁴ Michelle D. Amaral,⁵ Jonathan S. Berg,⁶ Sawona Biswas,⁷ Kevin M. Bowling,⁵ Laura K. Conlin,⁷ Greg M. Cooper,⁵ Michael O. Dorschner,⁸ Matthew C. Dulik,⁹ Arezou A. Ghazani,¹⁰ Rajarshi Ghosh,¹¹ Robert C. Green, ^{3,12,15} Ragan Hart,¹ Carrie Horton,¹³ Jennifer J. Johnston,¹⁴ Matthew S. Lebo,^{3,12} Aleksandar Milosavljevic,¹¹ Jeffrey Ou,¹ Christine M. Pak,⁴ Ronak Y. Patel,¹¹ Sumit Punj,⁴ Carolyn Sue Richards,⁴ Joseph Salama,¹ Natasha T. Strande,⁶ Yaping Yang,¹¹ Sharon E. Plon,¹¹ Leslie G. Biesecker,¹⁴ and Heidi L. Rehm^{3,12,15}*

¹University of Washington, Division of Medical Genetics, Department of Medicine, Seattle, WA, ²Kaiser Permanente, Center for Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ²Kaiser Permanente, Center for Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ²Kaiser Permanente, Center for Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ²Kaiser Permanente, Center for Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ⁴Oregon Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ⁴Oregon Health Research, Portland, OR, ³Laboratory for Molecular Medicine, Seattle, WA, ⁴Oregon Health Research, Portland, OR, ⁴Oregon Health Research, ⁴Oregon Health Research, Portland, Portland, Po Molecular and Medical Genetics, Portland, OR, ⁵HudsonAlpha Institute for Biotechnology, Huntsville, AL, ⁶University of Washington, Center of Pediatrics, Philadelphia, PA, ⁸University of Washington, Center for Precision Diagnostics, Department of Pathology, Seattle, WA, ⁹Children's Hospital of Philadelphia, PA, ¹⁰Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, ¹¹Baylor College of Medicine, Houston, TX, ¹²Brigham & Women's Hospital and Harvard Medical School, Cambridge, MA, ¹³Clinical Diagnostics, Ambry Genetics, Aliso Viejo CA, ¹⁴National Institutes of Health, The Intramural Research Institute, Bethesda, MD, ¹⁵The Broad Institute of MIT and Harvard, Cambridge, MA

Introduction

- There is a need to standardize pathogenicity classification of genomic variants in medical sequencing.
- We have previously reported both inconsistency across labs in variant classification and a bias towards overcalling pathogenicity.^{1, 2}
- The ACMG recently published guidelines for variant classification for Mendelian disorders designed to increase consistency among labs.³
- The Clinical Sequencing Exploratory Research (CSER) Consortium piloted the use of these rules by 9 of the CLIA labs supporting CSER projects.

Methods

- 99 variants were considered, representing all categories (pathogenic, likely pathogenic, uncertain significance (VUS), likely benign, and benign).
- 9 were classified by all 9 labs, 90 variants were classified by 3 labs using both the lab's own classification system and also the ACMG guidelines.
- We evaluated both intra-laboratory and inter-laboratory differences among variant classifications using the labs' criteria vs. adopting ACMG criteria.
- Discrepant ACMG classifications were discussed via phone conferences (including the 9 variants classified by all 9 labs) and over email to identify sources of discordant variant classifications and clarify correct use for the ACMG lines of evidence.

Figure 2. Distribution of 99 Variants Submitted for Assessment.

Gray outlines illustrate the distribution of variant classifications submitted. Green bars indicate calls that were agreed upon after initial review, blue indicates calls agreed upon after email exchange and the black bars indicate calls agreed upon after discussion on conference calls.

1. Amendola et al., Genome Res. 2015 Mar;25(3):305-15.

- 2. Rehm et al, NEJM, 2015;372, 2235-42.
- 3. Richards et al., Genet Med. 2015 May;17(5):405-24.

This work was funded by: UO1HG0006546, U01HG006485, U01HG006500, U01HG006492, UM1HG007301, UM1HG007292, UM1HG006508, U01 U41HG006834, R21HG006596, R01HG006600, P50HG007257, R01HG006600, R01HG004500, R01CA154517, R01HG006618, R21HG006594, R01HG006615, R21HG006612, 5R21HG006613 and the Intramural Research Program of the National Human Genome Research Institute at NIH, with additional support from the participating laboratories.

Results

Figure 1B. Inter-laboratory Concordance of 97 Variants. Labs fully agreed 34% of the time. There was no statistically significant difference in concordance whether the lab used their own criteria vs ACMG criteria. (K Alpha Lab = 0.77, 95% CI [0.73, 0.80] vs. ACMG/AMP = 0.70, 95% CI [0.66, 0.74])

Figure 1C. Inter-laboratory Concordance after Consensus Efforts. After either email or telephone conference calls, consensus was achieved for 70/99 (71%) variants.

affect medical management

5% of differer ect medical m	ices may anagement		
LP vs. LB	LP vs. B	P vs. LB	P vs. B
1HG006487,	U01HG006	5507, U01H	G007307,

Table 1. ACMG/AMP rule clarifications and suggestions for modification

Rule	Description
PVS1	Predicted null where LOF is a mechanism for disease
PS1	Same amino acid change as previously established pathogenic variant, regardles of nucleotide change
PS2	De novo variant with confirmed maternit and paternity
PS3	Well established functional study
PM1	Located in mutational hot spot and/or critical/well established functional domai
PM2/ BS1	Absent in population databases/allele frequency is too high for the disease
PM3	For recessive disorders, in trans with a pathogenic variant
PM4	Protein length changing variant
PM5	Novel missense at amino acid with different pathogenic missense change
PP3/ BP4	Multiple lines of computational evidence
PP4	Patient's phenotype or family history higl specific for genotype
PP5/ BP6	Reputable source calls pathogenic/benigr
BS2	Observed in healthy adult for disorder wi full penetrance at an early age
BP1	Variant in a gene in which truncations primarily cause disease
BP2/ BP5	In trans with dominant pathogenic variar vs. Found in a case with alternate molect basis for disease

Observations and Lessons Learned

- therefore **complete consensus may not occur**

* Co-first author; ***** Presenting Author

	C	arifications/Suggestions
า	•	Do not apply to variants near the 3' end of the gene that escape nonsense mediated decay
SS	•	Does not include the same variant you are assessing as its not yet pathogenic and the rule is intended for variants with a different nucleotide change
ty	•	Suggest applying as moderate or supporting if variant is mosaic and frequency in tissue is consistent with phenotype
	•	Suggest reduced strength for assays that are not as well-validated or less well linked to phenotype
in	•	Not meant for truncations, more clarification needed for application of rule
	• • •	Cannot assume longer indels would be detected by NGS Suggest published control dataset can be used if size is \geq 1000 Cannot be applied for low quality calls or non-covered regions Must define the condition and inheritance pattern
	•	Suggest invoking as supporting if phase is not established Can upgrade if more than one proband reported
	•	Applicable for in-frame deletions, insertions or stop loss variants, not frameshifts, nonsense and splice variants
ent	•	Ensure pathogenicity of previously reported variant Suggest changing "novel" to "different" as some variants that are not novel may require assessment with this rule
	•	All lines must agree
hly	•	Not to be used for genetically heterogeneous or unsolved etiology conditions Not typically applied for an incidental finding analysis but may be applied for prior observations
n	•	Only applicable when evidence is not available, (e.g. Sharing Clinical Reports Project)
ith	•	Populations may not have been screened or excluded for phenotype
	•	Clarify the meaning of `primary'. Suggest >90%.
nt ular	•	Clarify that one should apply BP2 when the pathogenic variant was seen in the same gene as the variant being evaluated vs. BP5 when the pathogenic variant was in a different gene.

• The majority of variant classification **differences** are **resolvable** through consensus & data sharing

• Variant classification often requires professional judgment (even when using the same rules) and

• But all evidence must be accessible and rules should be applied correctly

• The ACMG/AMP rules would benefit from added quantitative guidance and gene specific guidance