Data double take: . Three examples of atypical alterations . detected in exome sequencing data

Jesse M. Hunter Ph.D.

I am a full-time paid employee of Ambry Genetics

Outline

Brief overview of exome sequencing at Ambry Genetics

<u>Case 1</u> – 17y old male with pigmentary maculopathy **CRB1** – compound heterozygous microduplication and nonsense

<u>Case 2</u> – 14y old male with high IgE and immunodeficiency **DOCK8** – compound heterozygous microtranslocation and small insertion

<u>Case 3</u> – 5y old female with a neuromuscular disorder with reduced calpain3 staining *CAPN3* – Homozygous microdeletion

Overview of clinical exome sequencing at Ambry Genetics

Case -1 Overview

Patient Phenotype

- 17 year old Caucasian male
- Poor central, peripheral, and night vision
- Complete color blindness
- Exotropia, hyperopia

Retinal exam

- Posterior vitreous detachment
- Pigmentary maculopathy

Fundus autofluorescence

- Large nummular areas of hypofluorescence **Electroretinogram**
- severely abnormal

Optical Coherence Tomography:

- Loss of normal retinal architecture
- Thin maculae with abnormal foveal contour
- Surface gliosis

Family History

- 2 distant maternal cousins blind in 20's
- Paternal and maternal families from a small greek island.

Exome sequencing

 Proband, unaffected mother, unaffected full brother

Case -1 CRB1 nonsense alteration

Paternally inherited[#] nonsense alteration

CRB1 g.1:197404165 c.3172G>T (NM_201253) p.E1058*

Father not available for sequencing but unaffected brother carries this alteration.

Variant classification = PATHOGENIC

- Nonsense
- Rare (Not in 1Kg, ESP, ExAC, dbSNP, HGMD).
- In trans with another mutation

CRB1

- <u>autosomal recessive</u> retinitis pigmentosa
- No second alteration identified by standard analysis

Ambry's bioinformatics team ran a fusion detection algorithm.

Bioinformatics pipeline for structural variation detection

Case -1 Maternally inherited *CRB1* **microduplication**

Case -1 *CRB1* microduplication validation

<u>PCR products were Sanger sequenced</u> and confirmed the anticipated sequences

Case -1 Report

Results Summary

Gene Symbol	Gene Inheritance	Characterized/Novel Gene*	Protein Change	Nucleotide Change	Genotype	Alteration Type	Alteration Classification	Gene Overlap
CRB1	Autosomal recessive	Characterized	p.E1058*	c.3172G>T	Heterozygous	Nonsense	Pathogenic	Decitive
				Exon 2				Positive,
			N/A	Rearrangement	Heterozygous	Complex	Uncertain	Partial

Case -2 Overview

Patient Phenotype

- 14 year old Hispanic boy
- Primary immunodeficiency
- Frequent and recurrent infections
- progressive bronchiectasis
- Chronic eczema

Lab findings

- Longstanding isolated CD4 T-cell lymphopenia
- T-cell proliferation defect
- High IgE, Low IgM
- Normal CD8 and NK cell counts

Exome sequencing

• Proband, unaffected mother, unaffected father

Case -2 DOCK8 small deletion

Paternally inherited 7bp frameshift insertion

DOCK8

g.9:328045

c.918_919INSTTGAACT NM_203447

Exon 9

Variant classification = PATHOGENIC

- FRAMESHIFT -The majority of variants listed in HGMD are loss of function alterations
- Rare not present in (ExAC, ESP, 1KG, dbSNP, HGMD).

DOCK8

- <u>autosomal recessive</u> Hyper-IgE recurrent infection syndrome
- No second alteration identified by standard analysis

Ambry's bioinformatics team ran a fusion detection pipeline.

Case -2 DOCK 8 Microtranslocation (3:73059-9:273007)(3p26.3;9p24.3)

Case -2 DOCK8 translocation validation

200PAND PROBAND

P3 P2 449 bp

All PCR products were Sanger sequenced. SNPs confirmed paternal and maternal alleles as well as the absence of exon2 in the translocation allele.

Case -2 DOCK8 translocation validation: Proband Sanger traces

Case -2 Report

Results Summary

Gene Symbol	Gene Inheritance	Characterized/ Novel Gene*	Protein Change	Nucleotide Change	Genotype	Alteration Type	Alteration Classification	Gene Overlap
DOCK8	Autosomal recessive	Characterized	p.K307Lfs*3	c.918_919insTTGAACT	Heterozygous, paternal	Frameshift	Pathogenic	Decitivo
			N/A	Disruption of coding exons 1-2	Heterozygous, maternal	Translocation	Pathogenic	POSICIVE

Engelhardt et al. 2015 and Mizesko et al. 2013

• immunodeficiency cases with deletion of exon 1 -2of DOCK8

Case -3 Overview

Patient Phenotype

- 5 y. old girl Hispanic / Honduran descent
- History of muscle fatigue and pain
- Slightly hypertrophy of calves
- Negative Gower's response
- Patient can run, jump, climb stairs
- Endurance and motor skills have remained stable
 Muscle biopsy
- necrotizing myopathy
- decreased staining for calpain 3
 EMG suggested myopathic changes
 Labs
- Highly elevated CK levels
- Elevated liver enzymes

Research western blot

• Calpain 3 completely absent

Exome sequencing

- Proband, unaffected mother
- No significant alterations identified with our standard pipeline.

Case -3 CAPN3 deletion; exome coverage

Case -3 CAPN3 deletion validation

All CAPN3 assays failed in the proband A control gene assay was normal

Case -3 Report

Results Summary

Gene Symbol	Gene Inheritance	Characterized/Novel Gene*	Nucleotide Change	Genotype	Alteration Type	Alteration Classification	Gene Overlap
САРМЗ	Autosomal recessive	Characterized	Deletion of entire gene & part of <i>GANC</i>	Homozygous	Gross deletion	Deleterious	Positive

Conclusions

- We identified atypical pathogenic alterations in 3 different genes and unrelated disorders from exome sequencing data
- Exome data can sometimes contain sufficient information to identify alterations beyond the typical SNVs and small indels.
- Deeper analysis of exome data can improve clinical diagnositic yield and makes a difference for patients.

Acknowledgments

Exome Team

Cameron Mroske – PCR design Katherine Helbig – Case Review <u>PCR and Sanger lab</u> Brady Barrows and Jill Cook <u>Bioinformatics</u> Wenbo Mu and Hsiao-Mei Lu

Directors

Kelly D. F. Hagman, Sha Tang, Wendy Alcaraz

Alex V. Levin

Jenina Capasso

Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital

Manish J. Butte

Assistant Professor of Pediatrics Child Health Research Institute Stanford University

Richard S. Finkel

Chief, Division of Pediatric Neurology Nemours Children's Hospital Let's find the answer.